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The Effect of Positive Assortative Mating at One Locus 
on a Second Linked Locus 

Part 2: Limiting Characteristics of Gametic and Genotypie Structures 

H. Gregorius 
Lehrstuhl f'tir Forstgenetik und Forstpflanzenziichtung, Universit~it GiSttingen (Federal Republic of Germany) 

Summary. Considerations proceed from a model of posi- 
tive assortative mating based on genotype at one locus, 
with an arbitrary number of alleles, assuming no selection, 
mutation, or migration, hypothetically infinite population 
size, and discrete non-overlapping generations. From these 
conditions, inferences are made about the genotypic struc- 
ture at a linked locus, as well as about the corresponding 
2-locus gametic structure. 

The following main results are presented: in the course 
of the generations, the genotypic structure at the second 
locus and the 2-1ocus gametic structure always tend to a 
limit responsive to the initial conditions concerning the 
joint genotypic structure at the two loci and the degree of 
assortativity and linkage. A complete, analytical represen- 
tation of the limits is given. In particular, if assortative 
mating is only partial and at the same time linkage is not 
complete, a population is not able to maintain a perma- 
nent deviation of the gametic structure from linkage equi- 
librium, and thus the genotypic structure at the second 
locus tends to Hardy-Weinberg proportions. On the other 
hand, if initial linkage disequilibrium is combined with 
partial assortative mating and complete linkage (or with 
complete assortative mating and unlinked loci) the popu- 
lation maintains this disequilibrium and thus the geno- 
typic structure at the second locus need not tend to 
Hardy-Weinberg proportions. It turns out that the condi- 
tions not only of complete linkage, but also of unlinked 
loci together with complete assortativity, imply no change 
in gametic structure from the initial structure. 

In order to demonstrate the influence of several para- 
meters on the speed of convergence to and the magnitude 
of the respective limits, several graphs are included. 

Introduction 

The effect of positive assortative mating based on geno- 
types at a single, multiallelic locus on the genotypic struc- 
ture (i.e. the set of genotypic frequencies) at a second, 
linked multiallelic locus has been considered earlier by the 
present author for one generation in order to arrive at a 
comprehensive understanding of the forces that transform 
the genetic structure of the parents into that of the proge- 
ny. To avoid unnecessary repetitions, the reader is re- 
ferred to this paper (Gregorius 1980). 

The extension of these considerations to an arbitrary 
number of generations should, in general, take into ac- 
count further, evolutionary forces, such as viability selec- 
tion, mutation, etc. However, introducing these additional 
parameters into the model makes it difficult, if not impos- 
sible, to demonstrate and evaluate the role played by the 
mating system in the dynamics of a population. Moreover, 
this role can be most effectively characterized by de- 
scribing the final state, provided there is any towards 
which population trajectories tend. Following this general- 
ly accepted way of proceeding, the present treatise will 
concentrate on investigating the asymptotic behavior of 
the genotypic structure at a locus 'hitch-hiking' with a 
positive-assoratively-mating locus. Particular attention will 
be paid to the question as to the existence of f'mal (equi- 
librium) states that (contrary to common expectation) do 
not exhibit Hardy-Weinberg proportions at the 'hitch- 
hiking' locus. Such a case would indicate the possibility 
that loci not participating in the genetic control of the 
mating system could form a separate 'apparent' system of 
mating. 

Key words: Equilibria - Genetic and genic structures - 
Hardy-Weinberg deviations - Matrix solution 

The Model 

The underlying assumptions are identical to those applied 
by Gregorius (1980), and thus shall be repeated only 
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briefly. Considerations are based on two diploid, auto- 
somal loci, each with an arbitrary number of alleles and 
recombination frequency 1-c. The alleles at the A-locus 
are denoted A i and at the B-locus B i. The two-locus geno- 
type 

nink 
BjBl 

is assumed to be the result of the fusion of two gametes of 
genotypes Ai, Bj and A k, B 1 respectively, and the frequen- 
cy of this zygotic genotype in the population is denoted 
PII k. It will be of no concern which of the two gametes is 
the male or the female, consequently F]l k = PI~ i. 

Further notations: 

t r frequency of the genotype AiAk; the set of these 
frequencies is referred to as the genotypic structure 
at the A-locus. 

Pjl frequency of the genotype BiBt; the set of these 
frequencies is referred to as the genotypic structure 
at the B-locus. 

pi,pj are the allele frequencies of A i and Bj at the A- and 
B-locus, respectively; they specify the allelic struc- 
ture at the respective locus. 
frequency of gametes carrying the alleles A i and Bj 
within the gametic production of the population; 
the set of these frequencies is referred to as the 
gametic structure. 

G] probability that two genes, one taken at random 
from the A-locus and the other taken at random 
from the B-locus of the same individual, are A i and 
Bj; the set of these frequencies is referred to as the 
joint genic structure at the A- and B-locus. 

P j / i k  frequency of the allele Bj within the group of indi- 
viduals posessing genotype AiA k- 

Pj ; ik  : = P j l i k  " p i k .  

' '  ( c '~  k (1 . ik 1 "i S ince~=~  ~1 + - c )  PIj) + ~ ' ~ j a n d  

i 1 1 ii 1 (no linkage) Gi = ~ . ~1 (~k + l~lk) + ~ " P;j, for c=$  

we obtain PI = GI" 

In order to demonstrate the pure effect of the mating 
system, selection, mutation, and migration are excluded, 
population size is assumed to be-hypothetically infinite 
and reproduction to occur in discrete, non-overlapping 
generations. The mating behavior of individuals is gov- 
erned exclusively by the A-locus as follows: each individu- 
al possessing genotype AiA k has probability a of selective- 
ly (assortatively) mating with an AiA k type, while with 
probability 1-a it mates at random from the whole popu- 
lation; a is the same for all genotypes with regard to the 

A-locus. All individuals are equally likely to take part in 
the process of reproduction. 

As a consequence of these conditions, the allelic struc- 
tures at the A- as well as at the B-locus do not change in 
the course of the generations. For further details, which 
however are not explicitly used in the succeeding deriva- 
tions, the reader is referred to Gregorius (1980). 

The  G a m e t i c  Structure  

In selection theory, it is a well known phenomenon that 
deviations of the gametic structure from independent as- 
signment of genes to the different loci (frequently mea- 
sured by a quantity called 'linkage disequilibrium') to a 
large extent determine the evolutionary course and speed 
of linked genes (Bodmer and Felsenstein 1967; Felsen- 
stein 1965; Nei 1963). The usefulness of considering gam- 
etic structures to obtain the probabilities with which fixa- 
tion of different pairs of genes occurs, when several sys- 
tems of inbreeding are applied, has been pointed out by 
Kimura (1963). 

The findings of Bodmer, Felsenstein, Kimura and Nei 
suggest that it would be worthwhile to investigate the 
change in gametic structures for the situation dealt with 
here, and in particular to raise the question as to possible 
implications for the genotypic structure at the B-locus. 
Denoting successive generations by a prime and taking 

i , note of the identity Gj = Pj;ii + ~ " Pj;ik, the follow- 
k ~ i  

ing system of difference equations can be derived from 
Gregorius [1980, Eqs. (5) and (1)]: 

�9 i (I -c0(I -c)" pi pj P'I --c. -c). cj + 

" ' i+p]+(1 _a).  pi G'] = ~ "  [a" Gj "pj] 

This system can be simplified in two steps. First we intro- 
i i pi which is the common measure duce Dj : = P] - �9 pj, 

1" .mkage disequilibrium, 
R] = I p l  o G i pj, and from this 

�9 i ~(1  c ) "  i R ' ] = t  i 1 i D ' ] = c ' D i +  - R}, i ' D i ~ I ' a ' R  j. (1) 

i and a 2 x Secondly, we define a two-component vector Xj 
2 matrix M by 

i Dj c , a(1 - c) ) :( ) 
R] ! 1 

From this, a matrix representation of Eq. (1) is obtained, 
namely 

X'] = M" X]. (la) 

For random mating (a = o) or complete linkage (c = 1), 
Eq. (1) reflect the corresponding well-known results, 
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I 
while for c = i and a = 1 the gametic and joint genie 
structures do not change. 

In the following, the indices i and j are omitted if there 
is no chance of confusion, and the subscript t is added to 
denote the generation number; upper bars denote equilib- 
rium or limiting values. 

To arrive at the possible equilibrium states for the gam- 
etic and joint genic structure, the condition X' = X has to 
be met, which is equivalent to 

' . b  (1 - 3 ) ' R .  ( 1  - c)"  D = a ( 1  - c ) ' R  and ~ = 

The solutions to the system are: 

F o r a ~ 1 4 : c : D = R = 0 ; f o r ~ = l  : D = R ; a n d f o r c = l :  

= (2 - ~). ~. 

Expressed in words, this result tells us that a population is 
not able to maintain a permanent gametic linkage disequi- 
librium as long as assortative mating is only partial (a 4= 1) 
and linkage is not complete (c 4= 1). 

Viewing a population whose gametic or joint genic 
structure still changes, some important  statements about 
the properties and significance of equilibrium states can 
be derived. Primarily, it would be interesting to know 
which conditions must be realized so that the structures 
approach a limit, and furthermore to relate such a limit to 
corresponding equilibrium states. 

For this purpose the initially stated assumption of  dis- 
crete, non-overlapping generations applied to the recur- 
sively def'med Eq. ( l a )  and 

X t = M t ' Xo 

is obtained, provided initiation is with generation 0, and 
the two structures in question are observed t generations 
later. 

From the basic theory of matrices (Gantmacher 1959), 
it is known that the powers of  M converge (in the sense of 
uniform convergence) for all admissable values of  a and c 

1 
(0 < a < i ,  ~ < c < 1) to a limiting matrix M. Conse. 
quenfly, the gametic as well as the joint genie structures 
converge in every case. 

In particular for a ~ 1 :/: c, M contains only zeros, and 

f ~ 1 7 6  ( ~ - ~ - ~ a ' 0 ) ' F u r t h e r ' _  , 0  

more, for ~ = 1 ~: c, M is a stochastic matrix with positive 
elements; thus M has two identical rows and I~ �9 M = M, 
which implies that the elements of  the first column are 

1 
both equal to ~ and those of the second column both 

2(1-r 
equal to 3-2c " 

Summarizing these findings, at the limit 

D = R = 0  for a : / : l v ~ c ,  

D = D o ,  R =  1 2 - a  "Do for c = l  

Do + 2(1 - c) �9 Ro 
D = R =  " for a = l .  

3 - 2c 

(2) 

I f  equilibrium states with limits are compared, the kind 
of  interrelationship between them becomes apparent: for 

each given equilibrium state .V( = ( ~ - ) ,  Eqs. (2) de- 

scribe possible initial conditions for a population to con- 
verge to this ,X. Another remarkable facet of  Eqs. (2) is 
that in the case of  initial linkage disequilibrium combined 
with partial assortative mating and complete linkage, a 
difference between the gametic and joint genie structure is 
always maintained, while in the remaining cases this dif- 
ference gradually disappears. 

The Genotypie Structure at the B - l o c u s  

Gregorius (1980) found it to be characteristic of  the pro- 
cess of  positive assortative mating at the A-locus on the 
genotypic structure of  the B-locus that the homozygote  
frequencies at the B-locus always exceed the correspon- 
ding Hardy-Weinberg frequencies. On the other hand, for 
a 4= 1 4= c there exists a unique joint equilibrium state for 
the A and B loci showing Hardy-Weinberg frequencies at 
the B-locus, a fact from which one might suspect that at 
least for some cases, the surplus o fhomozygotes  vanishes 
in the course of the generations. Whether this is a general 
tendency or not shall be investigated in this section. Here, 
the concern is not the derivation of  possible equilibrium 
states for the genotypic structure at the B-locus, but rath- 
er the limiting behavior of  this structure. In order to facili- 
tate examination of these considerations, some already 
known relations shall be recalled [Gregorius 1980, Eqs. 
(3), (4a), (5)1: 

1 pik 2 ( 1 - - 0  0 pi pk p,ik = ~ . Ot �9 + �9 " for i 4= k, 

1 p'ii = ~ . ot �9 (pi + pii) + (1 - or) �9 (pi)2, and (3) 

t r , 
Pjl = 2a �9 Cjl + 2 " pj " Pl for j 4= I, Pjj = a " Vj + (pj)2 

where Cjl = i,Zk (Pj/ik -- Pj)(Pl/ik -- Pl) " pik is the covari- 

i<k 
ance of  the frequencies of  the alleles Bj and B l and Vj = Cij 
is the variance of the frequency of the allele B 1 between 
the groups of AiA k individuals; finally 

' ' + (1  - oe) (P]  pk Pj;ik = ] . Ot o Pj;ik . + pk . pi) for i =/= k, 

, 1 " (P] + Pj;ii) + (1 -- a ) "  Pj Pj;ii =5  " O~ i . pi. 

Now, in the preceeding section, convergence of the 
i for all values of  ct and c with an increasing quantities Pj 
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number of generations was proved, and the l imits-i  Pj are 
given by Eqs. (2). This in turn implies convergence of the 
quantities Pj;ik, as can be taken from the last two recur- 
rence relations. Since convergence of the genotypic struc- 
ture at the A-locus is also warranted, a simple computa- 
tion utilizing the individual limits (compare Gregorius 
1980: Section about the genetic equilibrium)leads to 

1 �9 (~ ] /p i  + ~ k / p k )  + ' . (~]/pi + ~j /pk)  = ~ pj. 
Pjj/ik = 

Since the Cji are the essential quantities in (3), conver- 
gence of the genotypic structure at the B-locus for all 
values of ~ and c is consequently proved, and further- 
more, 

C'-jI=I . ~ ( ~ i / p i  + ~ k / p k ) ( ~ i i / p i  + ~ k / p k ) . ~ i k ,  (4) 

i<k 

where ~ik = 2(1 - a) . 2 " pi . pk for i :~ k and 

pi i  = o~ + 2(1  - a)p i . pi are the well-known equilibrium 
2 - t ~  

values for positive assortative mating at the A-locus, and 
--i  the Dj are given by (2). 

With the help of these statements, the initially stated 
question as to the conditions under which a population 
attains a Hardy-Weinberg structure at the limit, with re- 
spect to the B-locus can now be answered. In order for the 
set of Pjl'S to form a Hardy-Weinberg structure, it is neces- 
sary and sufficient that Vj = 0 for all j, which in turn is 

- - i  equivalent to Dj = 0 for all i, j (linkage equilibrium); on 
the other hand, all situations for which linkage equilib- 
rium is realized can be derived from (2). 

From another point of view, the latter remark in par- 
ticular indicates that maintenance of deviations from 
Hardy-Weinberg proportions at the B-locus at least re- 
quires complete positive assortative mating (a = 1) or 
complete linkage combined with initial disequilibrium (c = 

1, D O q= 0). 
A considerable simplification of (4), and thus of the 

limiting representation of (3), is obtained if one assumes a 
= 1 :  

=  i/p i. 

Again, considering the corresponding formula from 
--i  Eqs. (2) for D j, this case constitutes an example of the 

joint influence of the initial gametic as well as joint genic 
structure on the limiting state of the genotypic structure 
at the B-locus; thus the joint genic structure cannot sim- 
ply be regarded as an auxiliary variable, but rather has its 
own significance. 

N u m e r i c a l  D e m o n s t r a t i o n s  

So far, these presentations have been concerned exclusive- 
ly with the derivation and computation of equilibrium 

and limiting states. This last section shall mainly be de- 
voted to the representation of changes in gametic struc- 
ture and genotypic structures in the course of generations. 
Since simple analytical solutions cannot be obtained in 
the majority of cases, a numerical treatment of the subject 
is employed, taking into account a certain loss of generali- 
ty of the resulting conclusions. 

In order to subsume characteristic properties of the 
gametic structure and the genotypic structures at each of 
the two loci in question, it is convenient to choose para- 
meters that reflect deviations of the gametic structure 
from the corresponding random association of genes and 
deviations of the homozygote from the corresponding 
Hardy-Weinberg frequencies. The difference between the 
actual and theoretical gametic structures shall be mea- 
sured as the genetic distance between them, applying a 
distance measure suggested earlier (Gregorius, 1974); for 
this purpose it takes the very simple form 

1 i 
d : = ~  �9 .~. I Di I ; 

I~J 

d ranges between 0 and 1. 
Provided that a kind of mating system or mixture of 

populations (as used, for example, for Wahlund's princi- 
ple) is considered that implies a surplus of homozygotes as 
compared to the corresponding Hardy-Weinberg structure, 
a measure of homozygosity commonly used is the so 
called 'apparent coefficient of inbreeding' F. F is defined 
as the deviation of the homozygote frequency from the 
corresponding random-mating proportion, divided by the 
random-mating proportion of heterozygotes 

,~_,(pii _ (pi)2) 
i 

FA : = 1 -- .~ (pi)~ 
I 

for the A-locus; F a is defined analogously. The word 'ap- 
parent' emphasizes the difference from the ordinary coef- 
ficient of inbreeding. Under the conditions mentioned 
above, F is a normalized quantity and ranges from 0 
(Hardy-Weinberg structure)to 1 (complete homozygosi- 
ty). 

In the preceeding sections the decisive significance of 
a, c, the initial gametic structure, and the joint genic 
structure for the asymptotic behavior of a population 
were pointed out. Therefore, and in order to avoid redun- 
dancy in numerical demonstrations, these considerations 
will be restricted to just one initial situation for the joint 
genotypic structure at the A and B loci, which reflects a 
sufficiently representative example for a nontrivial popu- 
lation structure. Based upon this situation, the effect of 
linkage and the degree of assortativity using several values 
for c and a shall be displayed. The initial population struc- 
ture is summarized in the following table for a model with 
two alleles at each locus: 
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Table 1. The joint genotypic structure at the A- and B-locus 
(plk) and the resulting gametic as well as joint genic structure 

(P], G]), and the genotypic structure at the A- (pik) and at the B- 
locus (Pjl) for the initial generation. 1-c = recombination frequen- 
cy 

Pj for 

p]k A~ A, A 2 A 2 G] 
B, B 2 B 1 B 2 c = 0.5 c = 0.8 c = 1.0 

AI 0.45 
B1 

A1 0.008 0.009 0.01 
B2 

A2 0.015 0.01 0.02 
Bl 

A2 0.21 0.007 0.01 
B2 

0.008 0.015 0.21 0.5165 0.5465 0.5665 0.5165 

0.007 0.0715 0.0415 0.0215 0.0715 

0.01 0.0875 0.0575 0.0375 0.0875 

0.261 0.3245 0.3545 0.3745 0.3245 

A~A 1 A tA  2 A 2A: BtB 1 B 1B 2 B 2B 2 

pik 0.467 0.242 0.291 Pjl 0.485 0.238 0.277 

Before proceeding to graphic representations, the limiting 
values for F n and F B shall be investigated briefly. 

e (5.a) 
F A -  2 - a  

and from (3): (1 - ~(pj):.  V B = ~" ~ Vj. 
J J 

If one now uses the assumption that at each of the two 
loci two alleles are present, it follows that 

: 
D : - -  D1 = ---D12 and D = PI" - "PI, 

which is the commonly used measure of linkage disequi- 
librium. Thus 

d= 2"  I D I. (5b) 

Furthermore, some straight-forward calculations show 
that ~1, as given by (4), boils down in the two-allelic case 
to 

( 2 - a ) ' p l  .p2 

and therefore 

D~ (5c) 
Fn = ~  " pl .p~ . p l  "P2 ' 

which specifies the relationship 

F2 
FB =FA" pl .p2.pl "P2 

The second quotient in (5c) is known as the squared cor- 

relation of genes at the A and B loci; because of this (or 
equivalently because of Eq. (iii) in the appendix): 

F'B ~---F'A" 

Since the genetic structures at each of the two loci are 
constant over the course of the generations and, beyond 
this, in most cases can be estimated from experimental 
data, it is of primary interest to provide information 
about the possible upper and lower bounds for D, and 
thus about the possible maximum value for FB assuming 
both allelic structures to be given. Some aspects of this 
problem have been considered earlier, for example by 
Sved (1971), but no sufficiently complete solutions have 
been obtained so far. A contribution toward such a solu- 
tion is presented in the appendix. Applying these results 
to the situation stated in the table (in which pl = 0.588, 
p2 = 0.412; Pl = 0.604, P2 = 0.396), one may obtain: 

�9 0.9357 -0.1632 < D < 0.2328, and thus F B --< 2 - tx 

and d _< 0.4657. 

Within the following graphic representations, Eqs. (5) 
shall serve as a standard, which for each generation give 
information about the deviation of the population from 
its equilibrium (limiting) state. The closeness of the limit- 
ing states to their maximum values in turn can be viewed 
in connection with the above numbers. 

Figures la-2c illustrate the previously stated presump- 
tion concerning the significance of the deviations of the 
gametic structure from stochastically independent associa- 
tion of alleles (measured by d) for the genotypic structure 
at the B-locus. There is a remarkably close relationship 
between the absolute amount of linkage disequilibrium 
(d) and the degree to which changes at the A-locus are 
accompanied by changes at the B-locus. The extreme sen- 
sitivity of this relationship, at least for complete assorta- 
tivity, is illustrated in Figures la-lc. While in Figure la, d 
is sufficiently large to induce a considerable increase of 
F B in the course of the generations, this tendency in Fig- 
ures lb and lc is reduced and even inverted, although d is 
only slightly diminished. 

Figures 2a-2c depict the important role played by the 
coefficient of linkage, c, in case assortative mating is only 
partial. On the one hand, complete linkage (Fig. 2a) gener- 
ally leads to qualitatively the same consequences as com- 
plete assortativity. However, on the other hand, incom- 
plete linkage always causes the deviations of the genotypic 
structure at the B-locus from Hardy-Weinberg proportions 
to approach zero, and the speed of this decline is strongly 
associated with the magnitude of c. 

Taking into account that for a = 1 and a = 0.3, the 
maximum values for FB are 0.9357 and 0.1651, respec- 
tively, and the maximum value for d is 0.4657, it shows 
that the situations presented in Figures la and 2a are 
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examples of  populations that are able to maintain the 
transmission of  developments from the A- to the B-locus 
at a high rate. 
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Appendix 

For the case of  two alleles at each of the two loci, 

1 2 D::P~ .P~-P~ .P, 
is the commonly used measure of  linkage disequilibrium. 

In order to simplify derivations, set 

a : = D / ( p  I . p 2 )  and a i : = P i / p  i ( i = 1 , 2 ) .  

From this, 

a = a l  " a 2 - ( 1 - a l ) ( 1 - a 2 ) = a l  + a 2 - 1  and 

P2 = a 2 " p 2 + ( 1 - a l ) ' p l ,  

which implies 

a = a l  + p 2 / p  2 - ( 1 - a l ) ' p l / p 2 - 1  = ( a l - p l ) / p 2 .  

Now, 0 _< al <_ I and 0 <_ a2 = (P2 - (1 - al )p l ) /p2  _< 1. 

Therefore 

I1 : = max [0, 1 - p2/p  l ]  < a l  < _ m i n [ 1 , p l / p X ] = :  $1 ; 

and I1 _<pl _<$1. 

Hence (I1 - Pl )/p2 _< a <__ (S1 - Pl ) /p2,  

which is equivalent to 

pl . ( 1 1 _ p l ) < _ D < _ _ p l  . ( S l _ p l ) .  (i) 

In fact, this is the same result Lewontin (1964) arrived 

at by us inga different proof  technique. 
Since a is a linearily increasing function of  a l ,  D at- 

tains its lower and upper bound if  and only ifPl~ -- pl  . $1 
and pl = pl  . S~ respectively. Note that I1 = 0 and $1 = 1 

simultaneously if  and only if pl _< min [Pl ,  P2 ]. 
Consequently, D attains its lower bound if and only if 

pl l = p l  . i 1  ,P~ = p l  - P l  . i 1  , 
1 =p l  2 1 

P2 " ( 1 - I 1 ) , P z = P 2 - P  " ( 1 - I 1 ) ,  

and D attains its upper bound if and only if 

t =pt  2 1 1 =pX 
P1 " S 1 , P I  = p l - p  " $ 1 , P 2  - ( 1 - S  1), 

P ~ = P 2 - p l  . ( I _ S , ) .  

With regard to (5c) the following derivation makes a state- 

ment about an upper bound for D 2. 

Define I2 "= max [0, 1 - P l /p2  ] and $2 : = min [1, p2/p 2 ]. 

As before, I2 _~ P2 ~ $2 and p l ( I i  - p l ) =  p2(I2 - P2), 

Pl(S1 - P l )  = P2($2 - P2). 

If this is applied to (i), 

D 2 _~pl . p2 . (Pl - I i )(p2 - I 2 ) o r  

"($1 - pl)($2 - P 2 ) ,  D 2 <_ pl . p2 

which implies 

D 2 <_ pl . p2 �9 max [(p, - I,)(p2 - I2), 

(S, - p ,)(S2 - P2)]. (ii) 

Furthermore,  (Pl - I i )(p2 - I2) < Pl " P2 and 

(S, - p, )($2 - P2 )__< (1 - p,  ) .  (1 - P2) = Pl " P2, and thus 
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D z < p t  . p2  . p l  "P2 (iii) 

It is particulady interesting to investigate the condi- 
tions under which D 2 attains a value that is equal to the 
right hand side of  (iii). According to (ii), this is equivalent 
to finding the conditions for max [(pl-I1)(p2-I2), 
(St -p t XS~-p2 )] = p t " p2, which holds if and only if I t = 

12 = 0 or $1 = $2 = 0. On the other hand, I1 = I2 = 0 is 
equivalent to pl = P2, and S t = $2 = 0 is equivalent to p~ 
= Pl- Thus: a necessary and sufficient condition for the 
maximum value of  D 2 (given pl ,  p t )  to be equal to Pl �9 
P 2 " P a  " p 2 i s p ~ = p 2 o r p t = p t .  


